Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2225159.v1

ABSTRACT

The COVID-19 pandemic has caused over 6.4 million registered deaths to date, and has had a profound impact on economic activity. Here, we study the interaction of transmission, mortality, and the economy during the SARS-CoV-2 pandemic from January 2020 to December 2022 across 25 European countries. We adopt a Bayesian vector autoregressive model with both fixed and random effects. We find that increases in disease transmission intensity decreases Gross domestic product (GDP) and increases daily excess deaths, with a longer lasting impact on excess deaths in comparison to GDP, which recovers more rapidly. Broadly, our results reinforce the intuitive phenomenon that significant economic activity arises from diverse person-to-person interactions. We report on the effectiveness of non-pharmaceutical interventions (NPIs) on transmission intensity, excess deaths and changes in GDP, and resulting implications for policy makers. Our results highlight a complex cost-benefit trade off from individual NPIs. For example, banning international travel increases GDP however reduces excess deaths. We consider country random effects and their associations with excess changes in GDP and excess deaths. For example, more developed countries in Europe typically had more cautious approaches to the COVID-19 pandemic, prioritising healthcare and excess deaths over economic performance. Long term economic impairments are not fully captured by our model, as well as long term disease effects (Long Covid). Our results highlight that the impact of disease on a country is complex and multifaceted, and simple heuristic conclusions to extract the best outcome from the economy and disease burden are challenging.


Subject(s)
COVID-19 , Death
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.06.22273497

ABSTRACT

Several vaccines candidates are in development against Middle East respiratory syndrome–related coronavirus (MERS-CoV), which remains a major public health concern. Using individual-level data on the 2013-2014 Kingdom of Saudi Arabia epidemic, we employ counterfactual analysis on inferred transmission trees (“who-infected-whom”) to assess potential vaccine impact. We investigate the conditions under which prophylactic “proactive” campaigns would outperform “reactive” campaigns (i.e. vaccinating either before or in response to the next outbreak), focussing on healthcare workers. Spatial scale is crucial: if vaccinating healthcare workers in response to outbreaks at their hospital only, proactive campaigns perform better, unless efficacy has waned significantly. However, campaigns that react at regional or national level consistently outperform proactive campaigns. Measures targeting the animal reservoir reduce transmission linearly, albeit with wide uncertainty. Substantial reduction of MERS-CoV morbidity and mortality is possible when vaccinating healthcare workers, underlining the need for at-risk countries to stockpile vaccines when available.


Subject(s)
Coronavirus Infections , Encephalitis, Arbovirus , Severe Acute Respiratory Syndrome
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.26.21252554

ABSTRACT

Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite high levels of previous infection there. Through genome sequencing of viruses sampled in Manaus between November 2020 and January 2021, we identified the emergence and circulation of a novel SARS-CoV-2 variant of concern, lineage P.1, that acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around early November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.4–2.2 times more transmissible and 25-61% more likely to evade protective immunity elicited by previous infection with non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness. One-Sentence Summary We report the evolution and emergence of a SARS-CoV-2 lineage of concern associated with rapid transmission in Manaus.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.11.21249564

ABSTRACT

We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for England. Among control measures implemented, only national lockdown brought the reproduction number below 1 consistently; introduced one week earlier it could have reduced first wave deaths from 36,700 to 15,700 (95%CrI: 8,900–26,800). Improved clinical care reduced the infection fatality ratio from 1.25% (95%CrI: 1.18%–1.33%) to 0.77% (95%CrI: 0.71%–0.84%). The infection fatality ratio was higher in the elderly residing in care homes (35.9%, 95%CrI: 29.1%–43.4%) than those residing in the community (10.4%, 95%CrI: 9.1%–11.5%). England is still far from herd immunity, with regional cumulative infection incidence to 1st December 2020 between 4.8% (95%CrI: 4.4%–5.1%) and 15.4% (95%CrI: 14.9%–15.9%) of the population. One-sentence summary We fit a mathematical model of SARS-CoV-2 transmission to surveillance data from England, to estimate transmissibility, severity, and the impact of interventions

5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.09.20096701

ABSTRACT

Brazil is an epicentre for COVID-19 in Latin America. In this report we describe the Brazilian epidemic using three epidemiological measures: the number of infections, the number of deaths and the reproduction number. Our modelling framework requires sufficient death data to estimate trends, and we therefore limit our analysis to 16 states that have experienced a total of more than fifty deaths. The distribution of deaths among states is highly heterogeneous, with 5 states---Sao Paulo, Rio de Janeiro, Ceara, Pernambuco and Amazonas---accounting for 81% of deaths reported to date. In these states, we estimate that the percentage of people that have been infected with SARS-CoV-2 ranges from 3.3% (95% CI: 2.8%-3.7%) in Sao Paulo to 10.6% (95% CI: 8.8%-12.1%) in Amazonas. The reproduction number (a measure of transmission intensity) at the start of the epidemic meant that an infected individual would infect three or four others on average. Following non-pharmaceutical interventions such as school closures and decreases in population mobility, we show that the reproduction number has dropped substantially in each state. However, for all 16 states we study, we estimate with high confidence that the reproduction number remains above 1. A reproduction number above 1 means that the epidemic is not yet controlled and will continue to grow. These trends are in stark contrast to other major COVID-19 epidemics in Europe and Asia where enforced lockdowns have successfully driven the reproduction number below 1. While the Brazilian epidemic is still relatively nascent on a national scale, our results suggest that further action is needed to limit spread and prevent health system overload.


Subject(s)
COVID-19 , Death , Infections
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.05.20089359

ABSTRACT

Italy was the first European country to experience sustained local transmission of COVID-19. As of 1st May 2020, the Italian health authorities reported 28,238 deaths nationally. To control the epidemic, the Italian government implemented a suite of non-pharmaceutical interventions (NPIs), including school and university closures, social distancing and full lockdown involving banning of public gatherings and non essential movement. In this report, we model the effect of NPIs on transmission using data on average mobility. We estimate that the average reproduction number (a measure of transmission intensity) is currently below one for all Italian regions, and significantly so for the majority of the regions. Despite the large number of deaths, the proportion of population that has been infected by SARS-CoV-2 (the attack rate) is far from the herd immunity threshold in all Italian regions, with the highest attack rate observed in Lombardy (13.18% [10.66%-16.70%]). Italy is set to relax the currently implemented NPIs from 4th May 2020. Given the control achieved by NPIs, we consider three scenarios for the next 8 weeks: a scenario in which mobility remains the same as during the lockdown, a scenario in which mobility returns to pre-lockdown levels by 20%, and a scenario in which mobility returns to pre-lockdown levels by 40%. The scenarios explored assume that mobility is scaled evenly across all dimensions, that behaviour stays the same as before NPIs were implemented, that no pharmaceutical interventions are introduced, and it does not include transmission reduction from contact tracing, testing and the isolation of confirmed or suspected cases. New interventions, such as enhanced testing and contact tracing are going to be introduced and will likely contribute to reductions in transmission; therefore our estimates should be viewed as pessimistic projections. We find that, in the absence of additional interventions, even a 20% return to pre-lockdown mobility could lead to a resurgence in the number of deaths far greater than experienced in the current wave in several regions. Future increases in the number of deaths will lag behind the increase in transmission intensity and so a second wave will not be immediately apparent from just monitoring of the daily number of deaths. Our results suggest that SARS-CoV-2 transmission as well as mobility should be closely monitored in the next weeks and months. To compensate for the increase in mobility that will occur due to the relaxation of the currently implemented NPIs, adherence to the recommended social distancing measures alongside enhanced community surveillance including swab testing, contact tracing and the early isolation of infections are of paramount importance to reduce the risk of resurgence in transmission.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.09.20033357

ABSTRACT

Background: A range of case fatality ratio (CFR) estimates for COVID 19 have been produced that differ substantially in magnitude. Methods: We used individual-case data from mainland China and cases detected outside mainland China to estimate the time between onset of symptoms and outcome (death or discharge from hospital). We next obtained age-stratified estimates of the CFR by relating the aggregate distribution of cases by dates of onset to the observed cumulative deaths in China, assuming a constant attack rate by age and adjusting for the demography of the population, and age and location-based under ascertainment. We additionally estimated the CFR from individual linelist data on 1,334 cases identified outside mainland China. We used data on the PCR prevalence in international residents repatriated from China at the end of January 2020 to obtain age-stratified estimates of the infection fatality ratio (IFR). Using data on age stratified severity in a subset of 3,665 cases from China, we estimated the proportion of infections that will likely require hospitalisation. Findings: We estimate the mean duration from onset-of-symptoms to death to be 17.8 days (95% credible interval, crI 16.9,19.2 days) and from onset-of-symptoms to hospital discharge to be 22.6 days (95% crI 21.1,24.4 days). We estimate a crude CFR of 3.67% (95% crI 3.56%,3.80%) in cases from mainland China. Adjusting for demography and under-ascertainment of milder cases in Wuhan relative to the rest of China, we obtain a best estimate of the CFR in China of 1.38% (95% crI 1.23%,1.53%) with substantially higher values in older ages. Our estimate of the CFR from international cases stratified by age (under 60 or 60 and above) are consistent with these estimates from China. We obtain an overall IFR estimate for China of 0.66% (0.39%,1.33%), again with an increasing profile with age. Interpretation: These early estimates give an indication of the fatality ratio across the spectrum of COVID-19 disease and demonstrate a strong age-gradient in risk.


Subject(s)
COVID-19 , Death
SELECTION OF CITATIONS
SEARCH DETAIL